Common best proximity point theorems for certain types of mappings
Arunachalam Murali, Krishnan Muthunagai
Received August 7, 2024. Published online March 19, 2025.
Abstract: Let $S$ and $T$ be two single-valued non-self-mappings from a nonempty set $\mathcal{P}$ to another nonempty set $\mathcal{Q}$. As they are non-self-mappings, the equations $Sx=x$ and $Tx=x$ do not have a common solution. In other words, they do not have a common fixed point. So one intends to find an element $x,$ close to $Sx$ and $Tx,$ which is called the common best proximity point. The common best proximity theorem guarantees the existence of such a best proximity point of the mappings $S$ and $T.$ In this article, we prove the existence and uniqueness of the common best proximity point for a pair of non-self-mappings for rational type contractive conditions on complex valued metric spaces. In addition, by transforming non-self-mappings into self-mappings in complex valued metric spaces, we prove the existence and uniqueness of a common best proximity point for Kannan type rational expression mappings and Chatterjea type rational expression contractive mappings. Moreover, we introduce contraction conditions involving a control function of some kind and prove the existence and uniqueness of a common best proximity point for such conditions. Our key findings extend and integrate some previously published results.
Keywords: best proximity point; fixed point; rational type contractive condition; complex valued metric space
References: [1] S. M. Aghayan, A. Zireh, A. Ebadian: Common best proximity points in complex valued metric spaces. Bull. Int. Math. Virtual Inst. 7 (2017), 549-560. MR 3649799 | Zbl 1412.54045
[2] M. A. Al-Thagafi, N. Shahzad: Convergence and existence results for best proximity points. Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 3665-3671. DOI 10.1016/j.na.2008.07.022 | MR 2504453 | Zbl 1197.47067
[3] A. Azam, B. Fisher, M. Khan: Common fixed point theorems in complex valued metric spaces. Numer. Funct. Anal. Optim. 32 (2011), 243-253. DOI 10.1080/01630563.2011.533046 | MR 2748327 | Zbl 1245.54036
[4] S. K. Chatterjea: Fixed-point theorems. C. R. Acad. Bulg. Sci. 25 (1972), 727-730. MR 0324493 | Zbl 0274.54033
[5] B. S. Choudhury, N. Metiya, P. Maity: Best proximity point results in complex valued metric spaces. Int. J. Anal. 2014 (2014), Article ID 827862, 6 pages. DOI 10.1155/2014/827862 | MR 3261246 | Zbl 1390.54029
[6] A. A. Eldred, P. Veeramani: Existence and convergence of best proximity points. J. Math. Anal. Appl. 323 (2006), 1001-1006. DOI 10.1016/j.jmaa.2005.10.081 | MR 2260159 | Zbl 1105.54021
[7] K. Fan: Extensions of two fixed point theorems of F. E. Browder. Math. Z. 112 (1969), 234-240. DOI 10.1007/BF01110225 | MR 0251603 | Zbl 0185.39503
[8] M. Gabeleh: Global optimal solutions of non-self mappings. Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 75 (2013), 67-74. MR 3130208 | Zbl 1299.47109
[9] M. Gabeleh: Best proximity points for weak proximal contractions. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 143-154. DOI 10.1007/s40840-014-0009-9 | MR 3394044 | Zbl 1310.41028
[10] N. Hussain, A. Azam, J. Ahmad, M. Arshad: Common fixed point results in complex valued metric spaces with application to integral equations. Filomat 28 (2014), 1363-1380. DOI 10.2298/FIL1407363H | MR 3360044 | Zbl 1462.54066
[11] G. Jungck: Commuting mappings and fixed points. Am. Math. Mon. 83 (1976), 261-263. DOI 10.1080/00029890.1976.11994093 | MR 0400196 | Zbl 0321.54025
[12] R. Kannan: Some results on fixed points. Bull. Calcutta Math. Soc. 60 (1968), 71-76. MR 0257837 | Zbl 0209.27104
[13] S. Mondal, L. K. Dey: Some common best proximity point theorems in a complete metric space. Afr. Mat. 28 (2017), 85-97. DOI 10.1007/s13370-016-0432-1 | MR 3613622 | Zbl 1489.54177
[14] A. Murali, K. Muthunagai: Best proximity point theorems for generalized rational type contraction conditions involving control functions on complex valued metric spaces. Adv. Fixed Point Theory 13 (2023), Article ID 13, 11 pages. DOI 10.28919/afpt/8299
[15] A. Murali, K. Muthunagai: Fixed points for interpolative and rational type mappings on complex valued metric spaces. AIP Conf. Proc. 3180 (2024), Article ID 020001. DOI 10.1063/5.0224350
[16] J. B. Prolla: Fixed-point theorems for set-valued mappings and existence of best approximations. Numer. Funct. Anal. Optimization 5 (1983), 449-455. DOI 10.1080/01630568308816149 | MR 0703107 | Zbl 0513.41015
[17] V. S. Raj: A best proximity point theorem for weakly contractive non-self-mappings. Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 4804-4808. DOI 10.1016/j.na.2011.04.052 | MR 2810719 | Zbl 1228.54046
[18] S. Reich: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62 (1978), 104-113. DOI 10.1016/0022-247X(78)90222-6 | MR 0514991 | Zbl 0375.47031
[19] F. Rouzkard, M. Imdad: Some common fixed point theorems on complex valued metric spaces. Comput. Math. Appl. 64 (2012), 1866-1874. DOI 10.1016/j.camwa.2012.02.063 | MR 2960809 | Zbl 1268.54033
[20] S. Sadiq Basha: Common best proximity points: Global minimization of multi-objective functions. J. Glob. Optim. 54 (2012), 367-373. DOI 10.1007/s10898-011-9760-8 | MR 2979635 | Zbl 1281.90058
[21] S. Sadiq Basha, P. Veeramani: Best proximity pairs and best approximations. Acta. Sci. Math. 63 (1997), 289-300. MR 1459793 | Zbl 0909.47042
[22] S. Sadiq Basha, P. Veeramani: Best proximity pair theorems for multifunctions with open fibres. J. Approximation Theory 103 (2000), 119-129. DOI 10.1006/jath.1999.3415 | MR 1744381 | Zbl 0965.41020
[23] V. M. Sehgal, S. P. Singh: A theorem on best approximations. Numer. Funct. Anal. Optimization 10 (1989), 181-184. DOI 10.1080/01630568908816298 | MR 0978810 | Zbl 0635.41022
[24] W. Sintunavarat, P. Kumam: Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal. Appl. 2012 (2012), Article ID 84, 12 pages. DOI 10.1186/1029-242X-2012-84 | MR 2922731 | Zbl 1295.54090
[25] V. Vetrivel, P. Veeramani, P. Bhattacharyya: Some extensions of Fan's best approximation theorem. Numer. Funct. Anal. Optimization 13 (1992), 397-402. DOI 10.1080/01630569208816486 | MR 1179367 | Zbl 0763.41026
Affiliations: Arunachalam Murali, Krishnan Muthunagai (corresponding author), Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai - 600 127, India, e-mail: murali.a2020@vitstudent.ac.in, muthunagai@vit.ac.in