Received August 26, 2024. Published online April 28, 2025.
Abstract: Let $R$ be a commutative Noetherian ring, $J$ an ideal of $R$, $M$ an $R$-module and let $d$ be a non-negative integer. In this paper we introduce a generalization of the notion of a local cohomology module, which we call a local cohomology module with respect to non-negative integer $d$ and ideal $J$, and study some of its properties. Also, we define $W(d,J)$ and $\widetilde{W}(d,J)$ and present the conditions under which $H^i_{d,J}(M)=0$. Finally, we investigate the concept of ${\rm depth}_{d,J}(M)$ and examine the top vanishing of the $R$-module $H^i_{d,J}(M)$.
Keywords: $(d,J)$-local cohomology; system of ideals; $(d,J)$-depth, $W(d,J)$
References: [1] K. Ahmadi-Amoli, M. Y. Sadeghi: On the local cohomology modules defined by a pair of ideals and Serre subcategory. J. Math. Ext. 7 (2013), 47-62. MR 3248761 | Zbl 1327.13056
[2] C. Banica, M. Stoia: Singular sets of a module on local cohomology. Boll. Unione Mat. Ital., V. Ser., B 16 (1979), 923-934. MR 0553806 | Zbl 0468.13010
[3] H. Bass: On the ubiquity of Gorenstein rings. Math. Z. 82 (1963), 8-28. DOI 10.1007/BF01112819 | MR 0153708 | Zbl 0112.26604
[4] N. P. Brodmann, R. Y. Sharp: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). DOI 10.1017/CBO9780511629204 | MR 1613627 | Zbl 0903.13006
[5] W. Bruns, J. Herzog: Cohen-Macaulay Rings. Cambridge Studies in Advanced Mathematics 39. Cambridge University Press, Cambridge (1993). DOI 10.1017/CBO9780511608681 | MR 1251956 | Zbl 0788.13005
[6] L. Chu, Q. Wang: Some results on local cohomology defined by a pair of ideals. J. Math. Kyoto Univ. 49 (2009), 193-200. DOI 10.1215/kjm/1248983036 | MR 2531134 | Zbl 1174.13024
[7] H. Matsumura: Commutative Ring Theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge (1986). DOI 10.1017/CBO9781139171762 | MR 0879273 | Zbl 0603.13001
[8] J. J. Rotman: Introduction to Homological Algebra. Universitext. Springer, Berlin (2009). DOI 10.1007/978-0-387-68324-9 | MR 2455920 | Zbl 1157.18001
[9] R. Takahashi, Y. Yoshino, T. Yoshizawa: Local cohomology based on a nonclosed-support defined by a pair of ideals. J. Pure. Appl. Algebra 213 (2009), 582-600. DOI 10.1016/j.jpaa.2008.09.008 | MR 2483839 | Zbl 1160.13013
[10] N. Zamani: Generalized local cohomology relative to $(I,J)$. Southeast Asian Bull. Math. 35 (2011), 1045-1050. MR 2907771 | Zbl 1265.13020
[11] N. Zamani, M. H. Bijan-Zadeh, M. S. Sayedsadeghi: $d$-transform functor and some finiteness and isomorphism results. Vietnam J. Math. 42 (2014), 179-186. DOI 10.1007/s10013-013-0042-2 | MR 3218854 | Zbl 1308.13030
[12] N. Zamani, M. H. Bijan-Zadeh, M. S. Sayedsadeghi: Cohomology with supports of dimension $\leq d$. J. Algebra Appl. 15 (2016), Article ID 1650042, 10 pages. DOI 10.1142/S0219498816500420 | MR 3454704 | Zbl 1336.13008