Mathematica Bohemica, first online, pp. 1-16


On pseudoparallel submanifold of trans-Sasakian manifolds admitting semisymmetric metric connection

Mehmet Atçeken, Tuğba Mert

Received November 13, 2024.   Published online April 8, 2025.

Abstract:  The aim of the present paper is to study invariant pseudoparallel submanifolds of a trans-Sasakian manifold equipped with semisymmetric metric connection. We have searched the necessary and sufficient conditions for an invariant pseudoparallel submanifold to be totally geodesic with respect to semisymmetric metric connection and structures reduced by the structures on the ambient manifold under the same conditions.
Keywords:  trans-Sasakian manifold; pseudoparallel and Ricci pseudoparallel; Ricci-generalized pseudoparallel and 2-pseudoparallel submanifold, semisymmetric metric connection
Classification MSC:  53C15, 53C42

PDF available at:  Institute of Mathematics CAS

References:
[1] C. S. Bagewadi: On totally real submanifolds of a Kählerian manifold admitting semisymmetric metric $F$-connection. Indian J. Pure Appl. Math. 13 (1982), 528-536. MR 0660945 | Zbl 0482.53050
[2] C. S. Bagewadi, E. G. Kumar: Note on trans-Sasakian manifolds. Tensor, New Ser. 65 (2004), 80-88. MR 2099688 | Zbl 1165.53343
[3] C. S. Bagewadi, V. Venkatesha: Some curvature tensors on trans-Sasakian manifolds. Turk. J. Math. 31 (2007), 111-121. MR 1138.53028 | Zbl 1138.53028
[4] G. Beldjilali: Classificaiton of almost contact metric structures on 3D Lie groups. J. Math. Sci., New York 271 (2023), 210-222. DOI 10.1007/s10958-023-06374-5 | MR 4643260 | Zbl 1532.53094
[5] S. K. Chaubey: Trans-Sasakian manifolds satisfying certain conditions. TWMS J. Appl. Eng. Math. 9 (2019), 305-314.
[6] U. C. De, A. Sarkar: On three-dimensional trans-Sasakian manifolds. Extr. Math. 23 (2008), 265-277. MR 2524542 | Zbl 1175.53058
[7] U. C. De, M. M. Tripathi: Ricci tensor in 3-dimensional trans-Sasakian manifolds. Kyungpook Math. J. 43 (2003), 247-255. MR 1982228 | Zbl 1073.53060
[8] J.-S. Kim, R. Prasad, M. M. Tripathi: On generalized Ricci-recurrent trans-Sasakian manifolds. J. Korean Math. Soc. 39 (2002), 953-961. DOI 10.4134/JKMS.2002.39.6.953 | MR 1932790 | Zbl 1025.53023
[9] T. Mert, M. Atçeken: A note on pseudoparallel submanifolds of Lorentzian para-Kenmotsu manifolds. Filomat 37 (2023), 5095-5107. DOI 10.2298/FIL2315095M | MR 4576638
[10] T. Mert, M. Atçeken, P. Uygun: On invariant submanifolds of Lorentz Sasakian space forms. J. Math. Ext. 17 (2023), Article ID 7, 17 pages. DOI 10.30495/JME.2023.2484 | Zbl 1524.53091
[11] J. A. Oubiña: New classes of almost contact metric structures. Publ. Math. Debr. 32 (1985), 187-193. DOI 10.5486/pmd.1985.32.3-4.07 | MR 0834769 | Zbl 0611.53032

Affiliations:   Mehmet Atçeken (corresponding author), Aksaray University, Ek Binasi 2, Aksaray, Turkey, e-mail: mehmet.atceken382@gmail.com; Tuğba Mert, Sivas Cumhuriyet University, 58140 Yerleşke, Sivas, Turkey, e-mail: tmert@cumhuriyet.edu.tr


 
PDF available at: